
GRAPHS CONTAINING EVERY 2-FACTOR

ALEXANDR V. KOSTOCHKA† AND GEXIN YU‡

Abstract. For a graph G, let σ2(G) = min{d(u)+d(v) : uv /∈ E(G)}. We prove that every

n-vertex graph G with σ2(G) ≥ 4n/3 − 1 packs with each 2-regular n-vertex graph. This

extends a theorem due to Aigner and Brandt and to Alon and Fisher.

1. Introduction

One of the basic results on hamiltonian cycles in graphs, Dirac’s theorem [8], says that

every n-vertex graph G with minimum degree, δ(G), at least n/2 contains a hamiltonian

cycle. The value n/2 is best possible. Furthermore, condition δ(G) ≥ n/2 does not guarantee

that G contains each 2-factor. Corrádi and Hajnal [6] proved that a 3k-vertex graph G with

δ(G) ≥ 2k contains k disjoint triangles. The condition δ(G) ≥ 2k cannot be weakened. Aigner

and Brandt [1], and independently Alon and Fisher [2] (for n sufficiently large) extended the

Corrádi-Hajnal Theorem as follows.

Theorem 1. If G is an n-vertex graph with δ(G) ≥ (2n−1)/3, then G contains each n-vertex

graph H with ∆(H) ≤ 2.

This theorem is also a step towards a conjecture by Bollobás and Eldridge [3], and Catlin [5]

on packing of graphs. We will discuss this conjecture and some other graph packing problems

in the next section. Fan and Kierstead [10] proved the following strengthening of Theorem 1.

Theorem 2. If G is an n-vertex graph with δ(G) ≥ (2n − 1)/3, then G contains the square

of a hamiltonian path.

Ore [16] gave a different sufficient condition for hamiltonicity: he proved that every n-

vertex graph G with

σ2(G) = min
xy/∈E(G)

{deg(x) + deg(y)} ≥ n

contains a hamiltonian cycle. Justesen [11] proved an Ore- type version of the Corrádi–Hajnal

Theorem by showing that every n-vertex graph G with σ2(G) ≥ 4n/3 contains ⌊n/3⌋ disjoint

triangles. Enomoto [9], and Wang [18] sharpened this result. In particular, they proved the

following.
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Theorem 3. For each positive integer k, every 3k-vertex graph G with σ2(G) ≥ 4k − 1

contains k disjoint triangles.

In [15], Theorem 3 was extended as follows.

Theorem 4. Each n-vertex graph G with σ2(G) ≥ 4n
3 − 1 contains all spanning subgraphs

whose components are isomorphic to graphs in H = {K1,K2, C3,K
−
4 , C+

5 }.

Here K−
4 denotes the graph obtained from the complete 4-vertex graph K4 by deleting an

edge, and C+
5 is the graph obtained from the 5-cycle C5 by adding an edge.

The aim of this paper is to prove the following Ore-type analogue of Theorem 1.

Theorem 5. Each n-vertex graph G with

(1) σ2(G) ≥
4n

3
− 1

contains every n-vertex graph H with ∆(H) ≤ 2.

This theorem is a step toward an Ore-type analogue of the BEC-conjecture discussed in the

next session. As it was mentioned above, we will discuss in this section some graph packing

problems. Then, in Section 3 we describe the structure of the proof (it will have 6 stages)

and give some needed definitions. In Section 4, we state several lemmas that are our main

tools for embedding into G of a sequence of subgraphs such that the last subgraph in the

sequence is the desired one. In the same section we also prove two of the lemmas that have

shorter proofs. The longer proofs are postponed. In Section 5 we show how Stages 2-4 work,

and in Section 6 — how Stages 5 and 6 work. In the last three sections, we present the proofs

for the lemmas from Section 4.

2. Packings of graphs

Two n-vertex graphs G1 and G2 pack if there exist injective mappings of their vertex sets

onto [n] such that the images of the edge sets do not intersect. Equivalently, G1 and G2 pack

if G1 is isomorphic to a subgraph of the complement of G2. This concept leads to a natural

generalization of a number of problems in extremal graph theory, such as existence of a fixed

subgraph, equitable colorings, and Turán-type problems. In the language of packing, some

embedding problems sound more natural. For example, let θ(G) = max{d(u) + d(v) : uv ∈

E(G)}. Then in the language of packings, the above-mentioned Ore’s theorem [16] says that

every n-vertex graph G with θ(G) ≤ n − 2 packs with the n- cycle Cn, and our Theorem 5

says that each n-vertex graph G with θ(G) ≤ 2n
3 − 1 packs with every n-vertex graph H such

that ∆(H) ≤ 2. Note that while σ2 relates to non-adjacent vertices, θ(G) is a characteristic

of edges in G. In [12], this parameter is called the maximum Ore-degree of G.

The study of extremal graph packing problems started in the 1970s by Bollobás and El-

dridge [3], Sauer and Spencer [17], and Catlin [4]. They considered graph packing under

degree constrains. In particular, Bollobás and Eldridge [3], and Catlin [5] stated the follow-

ing BEC-conjecture:
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Conjecture 1. If G1 and G2 are n-vertex graphs and (∆(G1)+1)(∆(G2)+1) ≤ n+1, then

G1 and G2 pack.

This is sharp, if true. Theorem 1 above is the case ∆(G2) = 2 of the BEC-conjecture.

Csaba, Shokoufandeh, and Szemerédi [7] also proved the conjecture in the case ∆(G2) ≤ 3

and n is huge, but otherwise, the BEC-conjecture is wide open.

The following Ore-type analogue of the BEC-conjecture was posed in [13].

Conjecture 2. If G1 and G2 are n-vertex graphs and (0.5θ(G1) + 1)(∆(G2) + 1) ≤ n + 1,

then G1 and G2 pack.

Thus Theorem 5 verifies the partial case of Conjecture 2 when ∆(G2) = 2. In fact, we will

prove the slightly more general result than Theorem 5, which in the language of packing is

as follows.

Theorem 6. Each n-vertex graph G such that

(2) θ(G) ≤
2n

3
− 1

packs with every n-vertex graph H such that θ(H) ≤ 4.

3. Proof structure

In this section, we introduce useful notions, and describe the idea of the main proof. We

use and somewhat modify the ideas of Aigner and Brandt [1].

Every component of an n-vertex graph H with θ(H) ≤ 4, is either a path, or a cycle,

or a K1,3. We will show the slightly stronger than Theorem 6 statement that every n-

vertex graph G satisfying (1), contains each n-vertex graph H whose components are in

F = {K1,K2,K
−
4 } ∪ {Clj : 3 ≤ lj ≤ n}.

A double i-lasso (further, simply an i-lasso), Di, consists of a path x1, x2, · · · , xi with the

additional edges x1x3 and xi−2xi. For example, D4 = K−
4 .

Here is a big picture of our proof. Let an n-vertex graph G satisfy (1) and let H be an

n-vertex graph whose components are in F . We will first embed into G an auxiliary graph

H1 whose every component has at most 5 vertices, namely in {K1,K2,K3,K
−
4 , C+

5 }. Then

using this embedding and (1), we will gradually find embedding of graphs whose components

are double lassoes which have the same orders as that of the corresponding cycle components

of H. Based on these embeddings and Property (1), we will be able to embed H into G. We

do this in several stages.

Stage 1. First, for each component Rj of H that is a cycle of length ℓj, we represent ℓj

as the sum of small summands according to the following rules.

(A) If ℓj ≡ 0 (mod 6), then ℓj = 6 + · · · + 6.

(B) If ℓj ≡ 3 (mod 6) and ℓj ≥ 9, then ℓj = 6 + · · · + 6 + 3.

(C) If ℓj ≡ 1 (mod 6), then ℓj = 6 + · · · + 6 + 3 + 4.

(D) If ℓj ≡ 2 (mod 6), then ℓj = 6 + · · · + 6 + 4 + 4.
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(E) If ℓj ≡ 4 (mod 6) and ℓj ≥ 10, then ℓj = 6 + · · · + 6 + 4.

(F) If ℓj ≡ 5 (mod 6) and ℓj ≥ 11, then ℓj = 6 + · · · + 6 + 4 + 4 + 3.

(G) If ℓj ≤ 5, then ℓj = ℓj .

Let H1 be obtained from H by replacing each C5-component Rj of H with C+
5 and replacing

for each ℓj ≥ 6, the component that is the cycle Cℓj
with the set Mj of disjoint K3-components

and K−
4 -components so that to each summand 4 in the above representation of ℓj corresponds

a K−
4 -component, to each summand 3 corresponds a K3, and to each summand 6 correspond

two disjoint K3s. By construction, H1 is an n-vertex graph whose every component is in

F1 = {K1,K2,K
−
4 ,K3, C

+
5 }. By Theorem 4, G contains a copy of H1. Graph H1 will be an

initial H-approximation.

Stage 2. We start from H-approximation H ′ = H1 with given sets Mj and will change

the approximation and the sets Mj . Given an H-approximation H ′, a graph H ′′ is an H-

approximation slightly better than H ′ if it is obtained from H ′ by replacing two K3-components

from the same Mj with a 6-lasso (in both, H ′ and Mj). From an embedding of H ′ into G we

will obtain an embedding into G of a slightly better graph, if such a graph exists. When the

stage ends, we embed into G an H-approximation H2 that we gradually obtained by slight

improvements from H1 such that each current Mj contains at most one K3-component. As

before, the orders of the components in each Mj sum to ℓj .

Stage 3. We start from H ′ = H2 with given sets Mj . Given an H-approximation H ′, a

graph H ′′ is an H-approximation slightly better than H ′ if it is obtained from H ′ by replacing

a K3-component and 6-lasso from the same Mj with a 9-lasso (in both, H ′ and Mj). From

an embedding of H ′ into G we will obtain an embedding into G of a slightly better H-

approximation, if such a graph exists. Let H3 be the final graph embedded into G in this

stage. It has the following structure. If ℓj ≡ 0 (mod 6), then every component of Mj is a

6-lasso. If ℓj ≡ 3 (mod 6) and ℓj ≥ 9, then one component of Mj is a 9-lasso and all the

other are 6-lassoes. If ℓj = 7 then Mj contains one K3-component and one K−
4 -component.

If ℓj ≡ 1 (mod 6) and ℓj > 7, then Mj contains one K−
4 -component, one 9-lasso and 6-

lassoes. If ℓj ≡ 2 (mod 6), then Mj contains two K−
4 -components and 6-lassoes. If ℓj ≡ 4

(mod 6) and ℓj ≥ 10, then Mj contains one K−
4 -component and 6-lassoes. If ℓj = 11 then

Mj contains one K3-component and two K−
4 -components. If ℓj ≡ 5 (mod 6) and ℓj ≥ 17,

then Mj contains two K−
4 -components, one 9-lasso and 6-lassoes.

Stage 4. We start from H ′ = H3 with given sets Mj . Given an H-approximation H ′, a

graph H ′′ is an H-approximation slightly better than H ′, if it is obtained from H ′ by replacing

a K3-component and K−
4 -component from the same Mj with a 7-lasso (in both, H ′ and Mj).

From an embedding of H ′ into G we will obtain an embedding into G of a slightly better

H-approximation, if such a graph exists. Let H4 be the H-approximation resulting from this

stage that is embedded into G.

Stage 5. We start from H ′ that is obtained from H4 by replacing each C+
5 -component

with a C5-component. Since H ′ ⊆ H4, we have an embedding of H ′ into G. Given an H-

approximation H ′, a graph H ′′ is an H-approximation slightly better than H ′ if it is obtained
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from H ′ by replacing two disjoint lassoes (say of orders z1 and z2) from the same Mj with

a (z1 + z2)-lasso. Recall that we view K−
4 as a 4-lasso. As before, from an embedding of

H ′ into G we will obtain an embedding into G of a slightly better H-approximation, if such

a graph exists. As the result of this stage, we embed into G the graph H5 that is obtained

from H by replacing each cycle of length ℓj ≥ 6 with an ℓj-lasso.

Stage 6. We start from the H-approximation H ′ = H5 and gradually replace each ℓj-lasso

in H ′ for ℓj ≥ 6 with an ℓj-cycle and embed the corresponding graph into G. By construction,

the last H-approximation embedded into G will coincide with H.

It is worth to mention that practically repeating our proof of Theorem 5 one can derive

the following slightly stronger result.

Theorem 7. Each n-vertex graph G satisfying (1) contains every n-vertex graph H such that

every component of H is either a cycle, or K1, or K2, or a double lasso Dℓ for ℓ 6= 5.

4. Basic lemmas

For two subgraphs X and X ′ of a graph F , let EF (X,X ′) denote the set of edges connecting

X with X ′ in F and eF (X,X ′) = |EF (X,X ′)|. For X ⊂ V (F ) and v ∈ V (F ), let dF (v,X) =

eF ({v},X). If the graph F is clear from the content, we will drop the subscript.

In Stages 5 and 6, an n-vertex graph H ′′ is an H-quasi-approximation, if there exists an

H-approximation H ′ such that H ′′ is obtained from H ′ by replacing a C5-component with a

D5-component. In this case, H ′ is slightly better than H ′′. A weak H-approximation is either

an H-approximation or H-quasi-approximation.

From now on, G is an n-vertex graph satisfying (1) with a fixed embedding Ψ of a weak

H-approximation H ′. When speaking of vertices and subgraphs of H ′, we usually will mean

H ′ as the subgraph of G defined by Ψ. By definition, in Stages 2–4, the notions of an

H-approximation and a weak H-approximation coincide.

Given a pair (G,H ′) where H ′ is a weak H-approximation of H embedded into G, a gadget

is a 4-element vertex set Y = Y1 ∪Y2 of H ′, where the 2-element sets Y1 and Y2 are chosen as

folows. If H ′ is an H-quasi-approximation, then Y1 consists of the first two vertices and Y2

consists of the last two vertices of the only D5-component in H ′. If H ′ is an H-approximation,

then each set Yi is formed either by the two first (or the two last) vertices of a double lasso

in H ′, or by the two nonadjacent vertices in a K−
4 -component in H ′. The component of H ′

containing Yi will be called the Yi-block, i = 1, 2. It may happen that the Y1-block and the

Y2-block coincide. In this case, Y1 and Y2 contain the ends of the same double lasso in H ′.

By default, we will assume that Y1 = {y1, y
′
1} and Y2 = {y2, y

′
2}. Gadgets will help us in

Stages 5 and 6 to find an embedding into G of an H-approximation slightly better than H ′.

For a gadget Y , a Y -connector Y ′ is a 4-element vertex set obtained from Y either (1) by

deleting some y ∈ Yi (where i ∈ {1, 2}) and adding some y0 adjacent to Yi − y and Y3−i, or

(2) by deleting some y ∈ Y1 and y′ ∈ Y2 and adding z and z′ such that z is adjacent to Y1 − y

and z′, and z′ is also adjacent to Y2−y′. The idea of a Y -connector is the following. If Y1 and
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Y2 are formed by the first two and the last two vertices in the same double-lasso-component

of H ′ with vertex set D, then for each Y -connector Y ′, the graph G[(D − Y ) ∪ Y ′] contains

a cycle with |D| vertices. If the Y1-block with vertex set Vj and the Y2-block with vertex set

Vj′ are distinct, then for each Y -connector Y ′, the graph G[(Vj ∪ Vj′ − Y ) ∪ Y ′] contains a

double lasso with |Vj | + |Vj′ | vertices.

For a path P = (u1, . . . , uk) and a set Y ⊂ V (G) and for 2 ≤ i ≤ k − 1, let d3(ui, Y ) =

e({ui−1, ui, ui+1}, Y ). The next lemma elaborates a lemma by Aigner and Brandt [1].

Lemma 1. Let H ′ be a weak H-approximation embedded into G. Let Y = Y1∪Y2 be a gadget.

Let P = (u1, . . . , uℓ+1) be a path of length ℓ in H ′ disjoint from Y . Let U = {u1, . . . , uℓ+1}.

Assume that the set Y ∪U does not contain a Y -connector Y ′ such that G[Y ∪U−Y ′] contains

a path of length ℓ from u1 to ul+1.

(c1) If ui ∈ U is adjacent to y ∈ Y1 and y′ ∈ Y2, then a vertex y′′ ∈ Y − {y, y′} cannot be

adjacent to all of the neighbors of ui in P .

(c2) If d3(ui, Y ) ≥ 9, then d(ui, Y ) ≤ 2. Furthermore, if d(ui, Y ) = 2, then ui cannot have

neighbors both in Y1 and Y2.

(c3) If some ui satisfies d3(ui, Y ) ≥ 9, then the possible degree sequences of (ui−1, ui, ui+1)

in Y are (4, 2, 3), (3, 2, 4), (4, 2, 4) and (4, 1, 4).

(c4) If d3(ui, Y ) + d3(ui+1, Y ) ≥ 17 for some i and d3(ui, Y ) ≥ 9, then the possible degree

sequences in Y for (ui−1, ui, ui+1, ui+2) are

(4, 2, 3, 3), (3, 2, 4, 2), (4, 1, 4, 3), (4, 2, 4, 2), (4, 2, 4, 1).

Furthermore, the subgraph of G induced by Y ∪ {ui−1, ui, ui+1, ui+2} is one of the graphs in

Figure 1 (up to isomorphism).

Proof of Lemma 1. Statement (c1) is clear, since otherwise G[U −ui +y′′] contains an ℓ-path,

and Y − y′′ + ui is a Y -connector.

To show (c2), observe that if d(ui−1, Y ) + d(ui+1, Y ) ≥ 5, then ui−1 and ui+1 have a

common neighbor in Y , and if d(ui−1, Y ) + d(ui+1, Y ) ≥ 6, then ui−1 and ui+1 have at least

two common neighbors in Y . So, if d(ui, Y ) ≥ 3, then we can always find y ∈ Y1 and y′ ∈ Y2

such that u is adjacent to y and y′, and y′′ ∈ Y − {y, y′} is a common neighbor of ui−1 and

ui+1, a contradiction to (c1). Furthermore, if d(ui, Y ) = 2 and ui has neighbors in both Y1

and Y2, then the same argument works.

By (c2), (c3) is clear.

Now we prove (c4). By (c3), (ui−1, ui, ui+1) has one of the four possible degree sequences

in Y . In all these sequences, d(ui+1, Y ) ≥ 3 and hence d3(ui+1, Y ) ≤ 8 by (c2). On the other

hand, d3(ui+1, Y ) ≥ 17 − d3(ui, Y ).

Suppose first that ui and ui+2 have a common neighbor y ∈ Y . We may assume that

y ∈ Y1. Since U −ui+1 + y contains a path of length ℓ, ui+1 cannot be adjacent to the vertex

in Y1−y. It follows that d(ui+1, Y ) = 3. To have d3(ui, Y ) ≥ 9, by (c2), we need d(ui, Y ) = 2

and d(ui−1, Y ) = 4. So, we have Case (A) in Figure 1.



GRAPHS CONTAINING EVERY 2-FACTOR 7

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(A) (B) (C)

(D) (E) (F)

(4,2,3,3) (3,2,4,2) (3,2,4,2)

(4,1,4,3) (4,2,4,2)
(4,2,4,1)

��
��
��

��
��
��ui−1

ui

ui+1

ui+2

z

z

z

Y1

Y2

Figure 1

Suppose now that ui and ui+2 have no common neighbor y ∈ Y . For this, by (c2), we

need d(ui+1, Y ) = 4. If d(ui, Y ) = 1, then to have d3(ui, Y ) + d3(ui+1, Y ) ≥ 17, we need

d(ui−1, Y ) = 4 and d(ui+2, Y ) = 3. This is Case (D) in Figure 1. So, let d(ui, Y ) = 2. Since

d(ui−1, Y ) ≥ 3, both neighbors of ui in Y are in the same Yj, say, in Y1. If d(ui+2, Y ) = 1,

then d(ui−1, Y ) = 4 and we have Case (F) in Figure 1. Finally, if d(ui+2, Y ) = 2, then both

neighbors of ui+2 in Y are in Y2 and we have one of Cases (B), (C), or (E) in Figure 1. �

Lemma 2. Let H ′ be a weak H-approximation H ′ in Stage 5 or 6. Let Y = Y1 ∪ Y2 be a

gadget and F ⊂ V (H ′) be such that H ′[F ] = Ck with k ≥ 5 is a component of H ′ disjoint

from Y . If k ≥ 6 and e(Y, F ) > 8k/3, then there exists a Y -connector Y ′ ⊂ Y ∪ F such that

G[(Y ∪ F ) − Y ′] contains a Ck. If k = 5 and e(Y, F ) ≥ 14, then there exists a Y -connector

Y ′ ⊂ Y ∪ F such that G[(Y ∪ F ) − Y ′] either contains a C5 or contains the double lasso D5.

Moreover, when H ′ is an H-quasi-approximation (and, by definition, Y1 and Y2 belong to the

only D5-component of H ′), if k = 5 and e(Y, F ) ≥ 14, then G[F ∪ F1] contains two disjoint

5-cycles.
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Proof. Let H ′[F ] = Ck = (u1, . . . , uk). Recall that d3(ui, Y ) = d(ui−1, Y ) + d(ui, Y ) +

d(ui+1, Y ). Since e(F, Y ) > 8k/3, there exists i such that d3(ui, Y ) + d3(ui+1, Y ) ≥ 17. By

flipping the order of vertices in F if needed, we may assume that d3(ui, Y ) ≥ 9. Lemma 1

yields that the possible degree sequences towards Y of (ui−1, ui, ui+1, ui+2) are

(4, 2, 3, 3), (3, 2, 4, 2), (4, 1, 4, 3), (4, 2, 4, 2), (4, 2, 4, 1),

and that G[Y ∪ {ui−1, ui, ui+1, ui+2}] is one of the graphs in Figure 1 (up to isomorphism).

Recall that by default, Y1 = {y1, y
′
1} and Y2 = {y2, y

′
2}. Assume that di = d(yi, F ) ≥

d(y′i, F ) = d′i for i = 1, 2.

CASE 1: k ≥ 6. Consider configurations (A), (C), and (E) in Figure 1. No matter where

y1 and y2 are, there is a path from y′1 to y′2 via ui and ui+1. Furthermore, graph G[F ∪

{y1, y2}−{ui, ui+1}] contains a Hamiltonian path from y1 to y2. Observe that e({y1, y2}, F −

{ui, ui+1}) ≥ d1 + d2 − 3 > 4
3k − 3 ≥ k − 1. So by the proof of Ore’s theorem, this graph is

Hamiltonian.

Consider now configurations (B), (D), and (F). If y1 = z (or y2 = z) in Figure 1, we

again obtain a contradiction by the previous argument. Thus we may assume that z = y′1
(or z = y′2) and d1 > d′1 (or d2 > d′2). Next, note that if in configuration (B), y2 were

adjacent to ui+3, then the same argument with {ui+1, ui+2} in place of {ui, ui+1} would yield

a contradiction. So we may assume they are not adjacent, and thus that d2 ≤ k − 2 in

configuration (B).

We now estimate d1 = e(Y, F )− d′1 − d2 − d′2 in (B), (D) and (F). If we replace {y1, y2} by

{y′1, y
′
2} in the previous argument, then to have G[F ∪{y′1, y

′
2}−{ui, ui+1}] non-Hamiltonian,

by Ore’s theorem we will have

d′1 + d′2 ≤ k − 1 + 3 and d2 ≤ k − 2 in (B) and (F),d′1 + d′2 ≤ k − 1 + 2 and d1 ≤ k − 1 in (D).

Set (i, j) equal to (1, 2) in (B) and (F) and equal to (2, 1) in (D). Then

(3) di > (
8

3
− 2)k =

2

3
k ≥

1

2
k + 1.

Now, Y ∪ {ui, ui+1} − {yi, y
′
j} contains a hamiltonian path from y′i to yj and so G[F ∪

{y′j} − {ui, ui+1}] is hamiltonian. It follows from (3) that yi is adjacent to two consecutive

vertices of the path F − {ui, ui+1}. So, Ck ⊆ G[F ∪ {yi, y
′
j} − {ui, ui+1}], as desired.

CASE 2: k = 5. Since e(Y,C5) ≥ 14, we have d(ui−2, Y ) ≥ 2 in graphs (A), (D) and (E),

and d(ui−2, Y ) ≥ 3 in graphs (B), (C) and (F). We see that in all cases, except (E), Condition

(c1) of Lemma 1 is violated for some subpath of length 3 in our 5-cycle.

In the remaining Case (E), the sequence of degrees in Y for (ui−2, ui−1, ui, ui+1, ui+2) is

(2, 4, 2, 4, 2), and the configuration is as in Figure 2.

Thus we may partition G[Y ∪ F ] into a path from Y1 to Y2 (non-filled circles in Figure 2)

and the lasso D5 (filled circles in Figure 2).

CASE 3: H ′ is an H-quasi-approximation (which means that the four vertices of Y are

the vertices of degree 2 in a D5-component F1 of H ′) and k = 5. Let the fifth vertex of



GRAPHS CONTAINING EVERY 2-FACTOR 9

(4,2,4,2,2)

Figure 2. The case (4, 2, 4, 2, 2)

.

F1 (adjacent to all vertices in Y ) be z. By the proof of Case 2, it is enough to consider

the sequence of degrees toward Y for (ui−2, ui−1, ui, ui+1, ui+2) equal to (2, 4, 2, 4, 2) and

the configuration depicted in Figure 2. If ui−2 has a neighbor, say, y1 in Y1, then both

G[V (F1) − y1 + ui−1] and G[F + y1 − ui−1] contain 5-cycles. Otherwise, N(ui−2, Y ) = Y2.

Then both G[{y1, y
′
1, z, ui−1, ui}] and G[{y2, y

′
2, ui+1, ui+2, ui−2}] contain 5-cycles. �

The proofs of the next three lemmas will be given in the last three sections.

Lemma 3. Let H ′ be a weak H-approximation H ′ in Stage 5 or 6. Let Y = Y1 ∪ Y2 be a

gadget and F = Dk with k ≥ 6 be a component of H ′ disjoint from Y . If e(Y, F ) > 8k/3,

then there exists a Y -connector Y ′ ⊂ Y ∪ F such that G[(Y ∪ F ) − Y ′] contains a Dk.

Lemma 4. Let H ′ be a weak H-approximation H ′ in Stage 5 or 6. Let Y = Y1 ∪ Y2 be a

gadget and F = K−
4 be a component of H ′ disjoint from Y . If e(Y, F ) ≥ 11, then G contains

an H-approximation that is slightly better than H ′.

Before stating the last lemma, we need more notions. A half-gadget is a set Z = {z1, z2} ⊂

V (H ′) formed either the two non-adjacent vertices of a K−
4 -component or by the two first

(or last) vertices of a 6-lasso. For a half-gadget Z = {z1, z2}, a Z-attachment is a 5-element

subset W of V (G) whose vertices can be ordered w1, w2, . . . , w5 so that w1 ∈ Z, all the edges

w2w3, w3w4, w4w5, w5w3 are in E(G), and either w2 ∈ Z or w1w2 ∈ E(G) (see Fig. 3).

We will use such attachments in Stages 3 and 4 to find subgraphs of G that contain 7-

lassoes (when the half-gadget is a part of a K−
4 -component of H ′) and 9-lassoes (when the

half-gadget is a part of a 6-lasso in H ′).

Lemma 5. Let T be the vertex set of a K3-component of H ′, and D be the vertex set of

a component of H ′ with H ′[D] ∈ {K1,K2,K3,K
−
4 , C+

5 ,D6,D9,D7} disjoint from T . Let
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ZZ

Figure 3. Two examples of Z-attachments. The white vertex on the left

does not belong to the Z-attachment.

Z = {z1, z2} ⊂ V (H ′) be a half-gadget disjoint from T ∪ D and

(4) 1.5e(Z,D) + e(T,D) > 4|D|.

Then Z ∪ T ∪ D contains a Z-attachment W such that G[Z ∪ T ∪ D − W ] contains H ′[D].

5. Embedding small lassoes

Suppose that we have an embedding Ψ into G of an H-approximation H1 whose components

are in {K1,K2,K3,K
−
4 , C+

5 }. In this section we show how Stages 2, 3, and 4 work.

Stage 2: Embedding of 6-lassoes. Suppose that at some step, we have an embedding Ψ

into G of an H-approximation H ′ whose components are K1’s, K2’s, K3’s, K−
4 ’s, C+

5 ’s, and

6-lassoes but cannot embed into G any slightly better H-approximation. In other words,

if H ′′ is obtained from H ′ by replacing two K3-components with a 6-lasso, then H ′′ is not

embeddable into G. Then G has no edges between any two K3-components of H ′.

Let some two K3-components of H ′ in the same set Mj have vertex sets C1 = {x1, x2, x3}

and C ′
1 = {x′

1, x
′
2, x

′
3}. By (1),

e(C1 ∪C ′
1, V (G)− (C1 ∪C ′

1)) =

3
∑

i=1

(d(xi) + d(x′
i))− 12 ≥ 3σ2(G)− 12 ≥ 4n− 15 > 4(n− 6).

So there is D ⊂ V (H ′) such that H ′[D] is a component of H ′ and e(C1 ∪ C ′
1,D) > 4|D|. If

H ′[D] = K3, then we are done. So, H ′[D] ∈ {K1,K2,K
−
4 , C+

5 }. We will show that we can

partition C1 ∪C ′
1 ∪D into two subsets W1 and W2 so that G[W1] ⊇ D6 and G[W2] ⊇ H ′[D].

That would give an embedding into G of a slightly better H-approximation.

This is easy when |D| = 1. If H ′[D] = K2, then e(C1 ∪ C ′
1,D) ≥ 9. We may assume that

e(C1,D) ≥ 5. Then there exists x ∈ C1 adjacent to both vertices in D. Let X = C1 − x and

Z = C ′
1 ∪ D + x. Since e(C ′

1,D) ≥ 9 − 6 > 0, G[Z] contains D6.

Let H ′[D] = K−
4 . Then e(C1 ∪ C ′

1,D) ≥ 17. Suppose that a vertex z ∈ D of degree 2 in

H ′[D] has at least two neighbors in C1. In this case, if D − z has a neighbor in C ′
1, then
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G[C ′
1 ∪D− z] contains a D6 and G[C1 + z] contains a K−

4 . Otherwise, e(D − z,C1 ∪C ′
1) ≤ 9

and hence e(D,C1 ∪ C ′
1) ≤ 15, a contradiction. So either of the 2-vertices in H ′[D] has at

most two neighbors in C1 ∪ C ′
1 and thus e(D,C1 ∪ C ′

1) ≤ 2 · 2 + 2 · 6 = 16, a contradiction

again.

Let H ′[D] be a 6-lasso. If C1 has a neighbor in one of the triangles of H ′[D], then C ′
1

has no neighbors in the other triangle in H ′[D]. So e(D,C1 ∪ C ′
1) ≤ 9 + 9 < 24 = 4|D|, a

contradiction.

Let H ′[D] be a 5-cycle (y1, y2, y3, y4, y5) with chord y2y5. First we prove that

(5) e(C1, {y3, y4}) ≤ 3 and e(C ′
1, {y3, y4}) ≤ 3.

Indeed, if e(C1, {y3, y4}) ≥ 4, then there is a matching of size two connecting C1 and {y3, y4}.

Thus G[C1 ∪{y3, y4}] contains a C+
5 , and hence there is no edge between C ′

1 and {y1, y2, y5}.

Since e(C1 ∪ C ′
1,D) ≥ 21, all other edges between D and C1 ∪ C ′

1 are present. In particular,

G[C ′
1 + y3 + y4] contains a C+

5 and the subgraph of G on the remaining 6 vertices contain a

D6. Thus, (5) holds.

We may assume that e(C1,D) ≥ e(C ′
1,D). Then e(C1,D) ≥ 11. By (5), e(C1, {y1, y2, y5}) ≥

8. Let x ∈ C1 be either the vertex non-adjacent to y1 (if exists), or any vertex adjacent to

both, y2 and y5. Then G[C1 − x + y1] is a K3 and G[D − y1 + x] contains a C+
5 . In order

to avoid a D6 in G[C ′
1 ∪ C1 − x + y1], e(y1, C

′
1) = 0 and by (5), e(C ′

1,D) ≤ 6. On the other

hand, also, by (5), e(C1,D) ≤ 12 and hence e(C ′
1,D) ≥ 9, a contradiction.

Stage 3: Embedding of 9-lassoes. Suppose that at some step, we have an embedding Ψ

into G of an H-approximation H ′ whose components are K1’s, K2’s, K3’s, K−
4 ’s, C+

5 ’s, and

6- and 9-lassoes but cannot embed into G any slightly better H-approximation. In other

words, if H ′′ is obtained from H ′ by replacing a K3-component and a 6-lasso with a 9-lasso,

then H ′′ is not embeddable into G.

Let T be the vertex set of a K3-component in H ′ and F be the vertex set of a 6-lasso in

H ′ containing path (z1, . . . , z6) and two chords z1z3 and z4z6.

Let Z = {z1, z2}. Then E({z1, z2}, T ) = ∅. So, by (1), 1.5(d(z1) + d(z2)) +
∑

u∈T d(u) ≥

3σ2(G) ≥ 4n − 3. Vertices in T ∪ V (F ) contribute at most 6 + 6 to
∑

u∈T d(u) and at most

2 · 1.5 · 5 = 15 to 1.5(d(z1) + d(z2)). So, 1.5e(Z, V (G − F ) − T ) + e(T, V (G − F ) − T ) ≥

4n − 3 − 12 − 15 > 4(n − 9). Thus for some component of H ′ with vertex set, say D,

1.5e(Z,D) + e(T,D) > 4|D|. Then Z, T and D satisfy the conditions of Lemma 5. By this

lemma, Z ∪ T ∪D contains a Z-attachment W such that G[Z ∪ T ∪D −W ] contains H ′[D].

Then G[(F − Z) ∪ W ] contains a 9-lasso.

Stage 4: Embedding of 7-lassoes. Suppose that at some step, we have an embedding Ψ

into G of an H-approximation H ′ whose components are K1’s, K2’s, K3’s, K−
4 ’s, C+

5 ’s, and

6-, 7-, and 9-lassoes but cannot embed into G any slightly better H-approximation. In other

words, if H ′′ is obtained from H ′ by replacing a K3-component and a K−
4 -component with a

7-lasso, then H ′′ is not embeddable into G.



12 ALEXANDR V. KOSTOCHKA† AND GEXIN YU‡

Let T be the vertex set of a K3-component in H ′ and F be the vertex set of a K−
4 -component

in H ′. Let Z = {z1, z2} be the set of degree-2 vertices in H ′[F ]. Then E({z1, z2}, T ) = ∅.

As in Stage 3, 1.5(d(z1)+d(z2))+
∑

u∈T d(u) ≥ 4n−3. Vertices in T ∪V (D) contribute at

most 6 + 6 to
∑

u∈T d(u) and at most 2 · 1.5 · 3 = 9 to 1.5(d(z1) + d(z2)). So, 1.5e(Z, V (G −

D) − T ) + e(T, V (G − D) − T ) ≥ 4n − 3 − 12 − 9 > 4(n − 7). Again, as in Stage 3, for some

component of H ′ with vertex set, say D, Z ∪ T ∪ D contains a Z-attachment W such that

G[Z ∪ T ∪ D − W ] contains H ′[D]. Then G[(F − Z) ∪ W ] contains a 7-lasso.

6. Proof of Theorem 5

Recall that the components of the initial H-approximation H ′ at the beginning of Stage 5

are in the set {K1,K2,K3,K
−
4 , C5,D6,D7,D9}.

Stage 5: Embedding of ℓj-lassoes for all ℓj ≥ 6. Let k = lj . If Mj does not consist of a Dk,

then it contains some smaller components which are lassoes. We take pairs of components

of H ′ in the same Mj and try to embed into G the graph H ′′ obtained from H ′ by replacing

such a pair with one bigger double lasso. Suppose that at some step, we cannot proceed.

Then by Stage 4, k ≥ 8 and k 6= 9. Recall that the components in Mj now are some double

lassoes, and among them at most two K−
4 ’s. Choose two such components with vertex sets

F1 and F2. If H ′[Fi] is not a K−
4 , then let Yi be the set of the two degree-2 vertices in one of

the end triangles of H ′[Fi]. And if H ′[Fi] is a K−
4 , then let Yi be the set of degree-2 vertices

in H ′[Fi]. By the assumption, there are no edges between Y1 and Y2. Thus the degree sum

of the four vertices in Y1 ∪ Y2 is at least 2σ2(G) ≥ 8n−6
3 .

Suppose first that for an i ∈ {1, 2}, some y ∈ Y1 and y′ ∈ Y2 have at least 4
3 |Fi| − 1

neighbors in Fi. Then H ′[Fi] is not a K−
4 , and thus is a double lasso Dt for some t ≥ 6. We

may assume that Dt consists of the path (x1 = y, x2, . . . , xt) with edges x1x3 and xt−2xt.

To avoid a bigger double lasso, y′ has no neighbors in {x1, x2, xt−1, xt}. Since 4t/3 − 1 > t,

there exists j with 4 ≤ j ≤ t − 3 such that yxj, y
′xj−1 ∈ E(G). So we have a bigger lasso

(H ′[F2] − y′, y′, xj−1, xj−2, · · · , y, xj , · · · , xt), a contradiction.

If there are no such i, y and y′, then e(Y, V (G) − F1 − F2) > 8
3 |V (G) − F1 − F2|.

So there is D ⊆ V (G) − F1 − F2 such that H ′[D] is a component of H ′ belonging to

{K1,K2,K3,K
−
4 , C5,Dl : l ≥ 6} and e(Y,D) > 8|D|

3 .

If H ′[D] = K1 and D = {x}, then e(x, Y ) ≥ 3. So, x has a neighbor y in Y1 and a neighbor

y′ in Y2. For y′′ ∈ Y2 − y′, graph G[F1 ∪ F2 + x − y′′] contains a double lasso with |F1 ∪ F2|

vertices.

If H ′[D] = K2 and D = {x1, x2}, then e({x1, x2}, Y ) ≥ 6. By symmetry, we may assume

that e({x1}, Y ) ≥ 3 and in particular that Y1 ⊂ NG(x1). If some y ∈ Y1 is adjacent to x2,

then G[{y, x2}] = K2 and G[F1 ∪F2 + x1 − y] contains a double lasso with |F1 ∪F2| vertices.

If N(x2) ∩ Y1 = ∅, then since e({x1, x2}, Y ) ≥ 6, we have Y ⊂ NG(x1) and Y2 ⊂ NG(x2), so

we have previous situation with Y1 and Y2 switched.

If H ′[D] = K3 and D = X = {x1, x2, x3}, then e(X,Y ) ≥ 9. By symmetry, we may

assume that e(X,Y1) ≥ 5, Y1 = {y1, y
′
1}, NG(y1) ⊃ X, and |NG(y′1) ∩ X| ≥ 2. Since
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e(X,Y2) ≥ 9 − e(X,Y1) ≥ 3 and |NG(y′1) ∩ X| ≥ 2, some vertex x ∈ NG(y′1) ∩ X has a

neighbor in Y2. So, G[X − x + y1] = K3 and G[F1 ∪F2 + x− y′1] contains a double lasso with

|F1 ∪ F2| vertices.

If H ′[D] is a K−
4 , then we apply Lemma 4. If H ′[D] is Dk with k ≥ 6, then we apply

Lemma 3. Thus we only need to consider the case when H ′[D] is a C5. By Lemma 2, there

exists a Y -connector Y ′ ⊂ Y ∪D such that G[(Y ∪D)− Y ′] either contains a C5 or contains

the double lasso D5. If it contains a C5, then we are done. So, suppose that G contains the

graph H ′′ obtained from H ′ by replacing H ′[F1 ∪ F2 ∪ D] with a (|F1| + |F2|)-lasso and a

5-lasso F3. Suppose that F3 consists of the path P = (x1, x2, x3, x4, x5) plus edges x1x3 and

x3x5. Let Y1 = {x1, x2}, Y2 = {x4, x5} and Y = Y1 ∪ Y2. If at least one edge connecting

Y1 with Y2 is present in G, then we are done. Otherwise, H ′′ is an H-quasi-approximation

and
∑

v∈V (F3)−x3
d(v) > 8n/3 − 2 > 8(n − 5)/3 + 11. Since the neighbors in F3 of these

vertices contribute only 8 to this sum, there is a component of H ′′ with vertex set, say, F4

that contributes more than 8|F4|/3 to this sum.

We now want to show that Y ∪ F4 contains a Y -connector Y ′ such that G[Y ∪ F4 − Y ′]

contains F4. That would imply that G contains an H-approximation H ′′′ that is slightly

better than H ′. Repeating the previous argument with the new Y and with F4 in place of

D, we again reduce the problem to the case F4 = C5. In this case, the last statement of

Lemma 2 says that G[F3 ∪ F4] contains two disjoint 5-cycles. This is what we need.

Stage 6: Embedding of ℓj-cycles for all ℓj ≥ 6. At the beginning of the stage, every Mj

consists of one component, Dlj . Suppose that at some step, we have an embedding into G of

an H-approximation H ′ but cannot embed any slightly better H-approximation. This means

that for some k ≥ 6, a component H ′[F1] of H ′ is the lasso Dk. Let H ′[F1] consist of the

path P = (y1, y2, . . . , yk) plus edges y1y3 and yk−2yk. Let Y1 = {y1, y2}, Y2 = {yk−1, yk}, and

Y = Y1 ∪ Y2. If G contains an edge connecting Y1 with Y2, then we are done. Otherwise, we

repeat the argument for Stage 5 and F1 = F2 with one additional possible situation for F : it

now can be also a cycle Cℓ with ℓ ≥ 6. In this case, we apply Lemma 2.

7. Proof of Lemma 3

Assume that H ′[F ] = Dk consists of a path (u1, u2, . . . , uk) with the additional edges u1u3

and uk−2uk. Let T1 = {u1, u2, u3}, T2 = {uk−2, uk−1, uk}, and P = {u4, . . . , uk−3}. Suppose

that the lemma is false. We will need the following two claims.

Claim 1. For i = 1, 2, e(Y, Ti) ≤ 8. Furthermore, if e(Y, Ti) = 8, then every vertex in Y has

a neighbor in Ti.

Proof. Suppose that e(Y, T1) ≥ 9. Then there exists i ∈ {1, 2} such that e(Yi, T1) ≥ 5, and

e(Y3−i, {u1, u2}) > 0. By symmetry, we may assume that u1y3−i ∈ E(G). Since e(Yi, T1) ≥ 5,

we can rename vertices yi and y′i of Yi so that u1yi ∈ E(G) and (u2, u3, y
′
i) is a triangle.

Then (yi, u1, y3−i) is a path in G from Yi to Y3−i, and G[F − u1 + y′i] contains a k-lasso, a

contradiction.
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Now suppose that e(Y, T1) = 8 and that y1 ∈ Y1 has no neighbors in T1. Then the other

three vertices of Y have degree sequence 3, 3, 2 toward T1 and one of u1 and u2, say u1, is

adjacent to all vertices in Y − y1. Let y2 be a vertex in Y2 that has 3 neighbors in T1. Then

Y − y2 + u1 is a Y -connector, and G[F − u1 + y2] contains a Dk. �

Claim 2. Let k ≥ 9. Let S1 =
∑3

i=1 d(ui, Y ) + 5
6d(u4, Y ) + 1

2d(u5, Y ) + 1
6d(u6, Y ) and

S2 = 1
6d(uk−6, Y )+ 1

2d(uk−5, Y )+ 5
6d(uk−4, Y )+

∑k
i=k−3 d(ui, Y ). Then S1 ≤ 12 and S2 ≤ 12.

Proof. Assume that S1 > 12. By Claim 1,
∑3

i=1 d(ui, Y ) ≤ 8.

CASE 1.
∑3

i=1 d(ui, Y ) ≤ 7. Then 5
6d(u4, Y ) + 1

2d(u5, Y ) + 1
6d(u6, Y ) > 5, that is,

5d(u4, Y ) + 3d(u5, Y ) + d(u6, Y ) ≥ 31.

If d(u4, Y ) = 4, then 3d(u5, Y ) + d(u6, Y ) ≥ 11. Since d(ui, Y ) ≤ 4, (c3) yields that the

degree sequence in Y for (u4, u5, u6) is (4, 4, 0). Then no vertex in Y has a neighbor in T1

(otherwise, we switch this vertex with u4), and thus
∑3

i=1 d(ui, Y ) = 0, and it implies that

S1 = 32/5 < 12, a contradiction.

If d(u4, Y ) ≤ 3, then 3d(u5, Y )+d(u6, Y ) ≥ 16. So d(u5, Y ) = d(u6, Y ) = 4 and d(u4, Y ) =

3, a contradiction to (c3).

CASE 2.
∑3

i=1 d(ui, Y ) = 8. Then 5
6d(u4, Y ) + 1

2d(u5, Y ) + 1
6d(u6, Y ) > 4, that is,

5d(u4, Y ) + 3d(u5, Y ) + d(u6, Y ) ≥ 25.

If d(u4, Y ) ≤ 2, then 3d(u5, Y ) + d(u6, Y ) ≥ 15. Thus d(u5, Y ) = 4 and d(u6, Y ) ≥ 3, a

contradiction to (c3).

If d(u4, Y ) = 3, then 3d(u5, Y ) + d(u6, Y ) ≥ 10. So, (c3) yields (d(u5, Y ), d(u6, Y )) ∈

{(2, 4), (3, 1), (3, 2), (4, 0), (4, 1)}. In any case, since d(u4, Y ) = 3 and d(u5, Y ) ≥ 2, there is a

neighbor y ∈ Y of u5 such that Y − y + u4 is a Y -connector. By Claim 1, y has a neighbor

in T1, and hence we may replace u4 with y in the double lasso, a contradiction.

If d(u4, Y ) = 4, then 3d(u5, Y ) + d(u6, Y ) ≥ 5. It follows that d(u5, Y ) ≥ 1. Again, switch

y ∈ N(u5) ∩ Y with u4, and we get a contradiction. �

Now we can prove the lemma. By Claim 1,

(6) e(Y, P ) >
8

3
|P | =

8

3
(k − 6).

It k = 6, then P = ∅, and hence e(Y, P ) = 0, a contradiction to (6).

Let k = 7, i.e., |P | = 1. Then e(Y, F ) ≥ 19 and e(Y, u4) ≥ 3. By symmetry, we may

assume that y1, y2, and y′1 are neighbors of u4. Then y1 and y′1 do not have neighbors in both

T1 and T2. For the same reason, y′2 does not have neighbors in both T1 and T2. Hence there

are at least 3 × 3 = 9 non-edges between Y and T1 ∪ T2. Thus y′2 is a neighbor of u4. It

follows that y2 does not have neighbors in both T1 and T2. We now have a contradiction to

e(F, Y ) ≥ 19.

The next case is k = 8, that is, |P | = 2. Then e(Y, F ) ≥ 22 and e(Y, {u4, u5}) ≥ 6. If

e(Y, {u4, u5}) ≥ 7, then u4 and u5 have at least three common neighbors in Y , and every
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common neighbor y ∈ Y of u4 and u5 cannot have neighbors in T1 ∪ T2 (otherwise, we may

switch y with u4 or u5 to get a Y -connector and a D8), thus e(Y, F ) ≤ 32 − 3 · 6 = 14, a

contradiction. If e(Y, {u4, u5}) = 6, then the common neighbors of u4 and u5 in Y have at

least 9 non-edges to T1 ∪ T2, thus e(Y, F ) ≤ 32 − 9 − 2 = 21, a contradiction.

If k = 9, then by Claim 2, e(Y, F ) ≤ 24 = 8/3|F |, a contradiction.

Now we let k ≥ 10. Consider the sum

S = S1 +
1

6

k−5
∑

i=5

(d3(ui, Y ) + d3(ui+1, Y )) + S2.

Observe that S = e(F, Y ) > 8
3k. This and Claim 2 imply that

∑k−5
i=5 (d3(ui, Y )+d3(ui+1, Y )) >

6(8/3k − 24) = 16(k − 9). Then there exists i with 5 ≤ i ≤ k − 5 such that d3(ui, Y ) +

d3(ui+1, Y ) ≥ 17. By the symmetry between ui and ui+1, we may assume that d3(ui, Y ) ≥ 9.

Now statement (c4) of Lemma 1 yields that one of the six configurations in Figure 1 occurs.

Consider P as the union of three paths with the vertex sets P1 = {u4, . . . , ui−1}, P0 =

{ui, ui+1}, and P2 = {ui+2, . . . , uk−3}.

Claim 3. Let k ≥ 10. Suppose that vertices y1, y
′
1 ∈ Y1 and y2, y

′
2 ∈ Y2 are chosen so that

(R1) y′1ui, y
′
2ui+1 ∈ E(G) and

(R2) y1ui−1, y2ui+2 ∈ E(G).

Then

(S1) for each 5 ≤ j ≤ i − 1, if ujy2 ∈ E(G), then uj−1y1 /∈ E(G), and if u4y2 ∈ E(G), then

y1 has no neighbors in T1;

(S2) similarly, for each i + 2 ≤ j ≤ k − 4, if ujy1 ∈ E(G), then uj+1y2 /∈ E(G), and if

uk−3y1 ∈ E(G), then y2 has no neighbors in T2;

(S3) d(y1, P1) + d(y2, P1) + e(Y, T1) ≤ i + 4 and d(y1, P2) + d(y2, P2) + e(Y, T2) ≤ k − i + 4.

Proof. Suppose first that ujy2 ∈ E(G) and uj−1y1 ∈ E(G) for some 5 ≤ j ≤ i − 1. Then by

(R2), the sequence

(T2, uk−4, uk−5, . . . , ui+2, y2, uj , uj+1, . . . , ui−1, y1, uj−1, uj−2, . . . , u4, T1)

forms a double lasso of order k in G, and by (R1), Y − y1 − y2 + ui + ui+1 is a Y -connector.

The same argument proves the second part of (S1), and a symmetric argument proves (S2).

By (S1), d(y1, P1)+d(y2, P1) ≤ i−3. Moreover, the equality is attained only if i−4 is odd

and y1 and y2 are both adjacent to u4, u6, . . . , ui−1. Then again by (S1), y1 is not adjacent

to T1. Therefore, by Claim 1, e(Y, T1) ≤ 7. This proves the first part of (S3). Proof of the

other part is the same. �

Consider configurations (A), (C) and (E) in Figure 1. For each choice of y1 ∈ Y1 and

y2 ∈ Y2 in these configurations, both (R1) and (R2) hold. So, by Claim 3, (S1) and (S2)

hold for each such choice. In particular, if u4 (respectively, uk−3) has a neighbor in Y2
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(respectively, Y1), then there are no edges between T1 and Y1 (respectively, T2 and Y2) which

yields e(Y, T1) ≤ 6 (respectively, e(Y, T2) ≤ 6). It follows from (S1) and (S2) that

e(Y, F ) = e(Y, {u1, . . . , ui−1}) + e(Y, {ui, ui+1}) + e(Y, {ui+2, . . . , uk}) ≤

(2 + 2(i − 1)) + 6 + (2 + 2(k − i − 1)) = 2k + 6.

Since e(Y, F ) > 8k/3, we get 2k + 6 > 8k/3, i.e., k < 9, a contradiction.

Consider now configuration (D) in Fig. 1. The set Y −y1−y′2 +ui +ui+1 is a Y -connector.

Graph G[F − ui − ui+1 + y1] contains lasso Dk−1. So, if y′2 is adjacent to two consecutive

vertices in P1 or P2, then G[F −ui −ui+1 + y1 + y′2] contains lasso Dk, a contradiction. Thus

d(y′2, P1) ≤ (i − 4 + 1)/2 and d(y′2, P2) ≤ (k − i − 4 + 1)/2. Since y′2ui /∈ E(G), we obtain

d(y′2, P ) ≤ k/2 − 2. Since y′1ui+2 /∈ E(G), we have d(y′1, P ) ≤ k − 7. Together with (S3) and

the fact that e({y1, y2}, P0) = 2 we obtain

e(Y, F ) ≤ (k/2 − 2) + (k − 7) + (i + 4) + (k − i + 4) + 2 = 5k/2 + 1.

It follows that 5k/2 + 1 > 8k/3, i.e., k < 6, a contradiction.

Consider configuration (F) in Fig. 1. The situation here is symmetric to (D). The set

Y − y′1 − y2 + ui + ui+1 is a Y -connector. Graph G[F − ui − ui+1 + y2] contains lasso

Dk−1. Vertex y′1 has no two consecutive neighbors on P1 and P2. Since y′1ui+2 /∈ E(G),

d(y′1, P2) ≤ (k − i − 4)/2, d(y′1, P1) ≤ (i − 3)/2, and hence d(y′1, P ) ≤ (k − 3)/2. Since

y′2ui, y
′
2ui+2 /∈ E(G), we have d(y′2, P ) ≤ k − 8. Together with (S3) and the fact that

e({y1, y2}, P0) = 3 we obtain

e(Y, F ) ≤ (k − 3)/2 + (k − 8) + (i + 4) + (k − i + 4) + 3 = (5k + 3)/2,

which yields k < 9, a contradiction.

Finally, consider configuration (B) in Fig. 1. Again, the set Y − y′1 − y2 + ui + ui+1 is a

Y -connector and G[F − ui − ui+1 + y2] contains lasso Dk−1. Since y′1ui+2, y
′
1ui−1 /∈ E(G)

and y′1 has no two consecutive neighbors on P1 and P2, we have d(y′1, P1) ≤ ⌊(i − 4)/2⌋ and

d(y′1, P2) ≤ ⌊(k− i− 4)/2⌋. Since y′2ui /∈ E(G), we have d(y′2, P ) ≤ k− 7. Together with (S3)

and the fact that e({y1, y2}, P0) = 3 we obtain

(7) e(Y, F ) ≤ (⌊(i−4)/2⌋+⌊(k− i−4)/2⌋+2)+(k−7)+(i+4)+(k− i+4)+3 ≤ 5k/2+2,

which yields k < 12. Furthermore, if k ∈ {10, 11}, then either i = 5 (and hence ⌊(i− 4)/2⌋ =

(i − 5)/2) or k − i = 5 (and hence ⌊(k − i − 4)/2⌋ = (k − i − 5)/2). In both cases, by (7),

e(Y, F ) ≤ (5k + 3)/2, which yields k < 9.

8. Proof of Lemma 4

Let F = {w1, w2, w3, w4} and H ′[F ] = K−
4 be such that dH′(w1) = dH′(w2) = 2 and

e(Y, F ) ≥ 11. In terms of the complement, this means that

(8) eG(Y, F ) ≤ 5.

Suppose by contradiction that the lemma is not true for Y and F .
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Assume first that for some i ∈ {1, 2}, wi has neighbors in both, Y1 and Y2. By symmetry, we

may assume that w1 is adjacent to y1 and y2. If some y ∈ {y′1, y
′
2} has at least two neighbors

in {w2, w3, w4}, then G[{y,w2, w3, w4}] contains K−
4 , and Y − y + w1 is a Y -connector. So,

eG({y′1, y
′
2}, {w2, w3, w4}) ≥ 4. By (8), w1 has a neighbor in {y′1, y

′
2}. By symmetry, we may

assume that y′1w1 ∈ E(G). Then, as above, y1 has at most one neighbor in {w2, w3, w4}.

Hence eG(Y, F ) ≥ 6, a contradiction. Thus we may assume that w1 has no neighbors in Y2,

and w2 has no neighbors in some Yj, where j ∈ {1, 2}.

If j = 2, then again by (8), w1 and w2 have a common neighbor, say y1, in Y1. Also by (8),

at most one edge between Y1 and {w3, w4} is missing. So, by symmetry, we can assume that

y1w3, y
′
1w4 ∈ E(G). Then G[V (F )−w4 + y1] contains K−

4 and Y − y1 + w4 is a Y -connector.

This contradiction proves that j = 1. Furthermore, if w1w2 ∈ E(G), then we can switch the

roles of {w1, w2} and {w3, w4} thus forcing eG(Y,H) ≥ 8, a contradiction.

So, from now on, E′ = {w1w2, w1y2, w1y
′
2, w2y1, w2y

′
1} ⊆ E(G). Let F1 = F ∪ Y . By (8)

and symmetry, we may assume that the only non-edge of G[F1] that is not in E′ (if exists) is

either y1w1 or y1w3 (see Figure 4). So, if the Yi-block is a K−
4 , then we can switch the roles

of F and this block. This implies that

(9) neither Y1-block nor Y2-block is a K−
4 .

Let Bi denote the vertex set of the Yi-block, i = 1, 2.
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Figure 4. The subgraph induced by F1 = F ∪ Y .

Let S = Y ∪ {w1, w2}. By (2),
∑

v∈S

d(v) ≥ 3σ2(G) ≥ 4n − 3.

Since the sum gains at most 24 from the neighbors in F1,

(10) e(S, V (G) − F1) ≥ 4n − 27 = 4(n − 8) + 5.

Therefore, either there exists a component H ′[D] of H ′ such that

(11) e(S,D) > 4|D|,

or for some i ∈ {1, 2} the set D = Bi − Yi satisfies (11), or B1 = B2 and the set D = B1 − Y

satisfies (11).

If H ′[D] = K1 is a component of H ′ and D = {u}, then by (11) there are at least 5 edges

from u to S. So, u has a neighbor in Y1 and a neighbor, say y2 in Y2. Then Y − y′2 + u is a

Y -connector and {y′2} forms a new K1-component of H ′ (see Figure 5).
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y1
y1y1

w1w1 w2w2 u

v

Figure 5. Partitions with K1,K3 and K−
4

If H ′[D] is a K2-component of H ′ and D = {u1, u2}, then by (11), e(D,S) ≥ 9 and so

e(D,Y ) ≥ 5. By symmetry, we may assume that e(u1, Y ) ≥ 3. We will construct a Y -

connector without using F , so we may assume that N(u1) ⊃ Y1 + y2. If u2 is adjacent to

some y ∈ Y1 + y2, then G[{y, u2}] = K2 and Y − y + u1 is a Y -connector. Otherwise, since

e(D,Y ) ≥ 5, we have N(u1) ⊃ Y and u2 has a neighbor y ∈ Y . So, again G[{y, u2}] = K2

and Y − y + u1 is a Y -connector.

Suppose that H ′[D] = K3 is a component of H ′ and D = {u1, u2, u3}. By (11), e(S,D) ≥

13. If for some i ∈ {1, 2}, |D∩N(wi)| ≥ 2, then G[D+wi] contains a K−
4 , G[{y3−i, w3−i, w3}] =

K3, and Y − y3−i + w4 is a Y -connector. Otherwise, e(Y,D) ≥ 13 − 2 = 11. It follows that

G[D + y1] contains a K−
4 , {y′1, w1, w3, y

′
2} is a Y -connector, and G[{w2, w4, y2}] = K3.

Suppose that H ′[D] = K−
4 is a component of H ′ and D = {u1, u2, u3, u4}, where u1u2 /∈

E(H ′). By (11), e(Y,D) > 4|D| − e({w1, w2},D) ≥ 2|D|. Then some u ∈ D has at least 3

neighbors in Y and hence has a neighbor y ∈ Y1 and a neighbor y′ ∈ Y2. Let y′′ ∈ Y2 − y′.

If e(Y,D) ≤ 10, then by (11), e({w1, w2},D) ≥ 7, and by symmetry we may assume that

e(w1,D) = 4. Then Y −y′′+u is a Y -connector, and each of G[F −w1+y′′] and G[D−u+w1]

contains K−
4 . So, suppose that e(Y,D) ≥ 11. Then repeating our argument for F , we may

assume that the missing edges in E(Y,D) are u1y2, u1y
′
2, u2y1, u2y

′
1, and maybe one more

edge. In particular, e(Y,D) ≤ 12 and hence e({w1, w2},D) ≥ 5. If w2u1 ∈ E(G), let y be

a neighbor of u1 in Y1 and y′ ∈ Y1 − y. In this case, {y2, w2, u1, y} is a Y -connector, and

each of G[F − w2 + y′2] and G[D − u1 + y′] contains a K−
4 . So, w2u1 /∈ E(G) and similarly

w1u2 /∈ E(G). Thus, since e({w1, w2},D) ≥ 5, either e(w1,D−u2) = 3 or e(w2,D−u1) = 3.

If e(w1,D−u2) = 3, then let h ∈ {3, 4} be such that uhy1 ∈ E(G) and let y ∈ Y2 be adjacent to

u2 and y′ ∈ Y2−y. In this notation, {y1, uh, u2, y} is a Y -connector, and each of G[F −w1+y′]

and G[{w1, y
′
1, u1, u7−h}] contains a K−

4 . If e(w1,D − u2) < 3, then e(w2,D − u1) = 3 and

e(Y,D) = 12, so that the missing edges in E(Y,D) are only u1y2, u1y
′
2, u2y1, and u2y

′
1. Then

{y1, u1, u3, y2} is a Y -connector, and each of G[F − w2 + y′1] and G[{w2, y
′
2, u2, u4}] contains

a K−
4 .

Before considering the remaining cases, we need two facts.

Lemma 6. Let P = (u1, u2, u3, u4) be a path in G − F1 and U = {u1, u2, u3, u4}. If

(12) d3(u2, S) + d3(u3, S) ≥ 25,
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then F1 ∪U can be partitioned into three sets, W1,W2, and W3 so that W1 is a Y -connector,

G[W2] contains a u1, u4-path of length 3, and G[W3] contains a K−
4 .

Proof. Case 1: d3(u2, {w1, w2}) + d3(u3, {w1, w2}) ≥ 9. We need two claims.

Claim 4. Let j ∈ {2, 3}.

(a) If w1uj−1, w1uj+1, w2uj ∈ E(G), then y1, y2, and y′2 are not neighbors of uj.

(b) If w2uj−1, w2uj+1, w1uj ∈ E(G), then y′1, y2, and y′2 are not neighbors of uj .

Proof. Let j = 3 (the case j = 2 is symmetric). Suppose that w1u2, w1u4, w2u3 ∈ E(G). If

z ∈ Y2 is a neighbor of u3, then Y − z + w4 is a Y -connector, G[{w3, w2, u3, z}] contains a

K−
4 , and (u1, u2, w1, u4) is a path in G. If y1u3 ∈ E(G), then Y − y′1 − y2 + u3 + w2 is a

Y -connector, G[{y′1, w3, w4, y
′
2}] = K−

4 , and (u1, u2, w1, u4) is a path in G. This proves (a).

Suppose now that w2u2, w2u4, w1u3 ∈ E(G). Let w = y1 and w′ = y′1 if y1w1 ∈ E(G)

and w = y′1 and w′ = y1 otherwise. If z ∈ Y2 is a neighbor of u3 and z′ ∈ Y2 − z, then

Y −w′−z′ +u3 +w1 is a Y -connector, G[{w′, w3, w4, z
′}] = K−

4 , and (u1, u2, w2, u4) is a path

in G. If y′1u3 ∈ E(G), then Y − y′1 + w4 is a Y -connector, G[{w1, w3, u3, y
′
1}] contains a K−

4 ,

and (u1, u2, w2, u4) is a path in G. �

Claim 5. Let h ∈ {1, 4}.

(a) If w1u2, w1u3, w2uh ∈ E(G), then either e(u5−h, Y2) = 0 or e(y′1, {u2, u3}) = 0.

(b) If w2u2, w2u3, w1uh ∈ E(G), then either u5−hy′1 /∈ E(G) or e(Y2, {u2, u3}) = 0.

Proof. By symmetry, we consider only h = 1. Assume first that w1u2, w1u3, w2u1 ∈ E(G),

e(u4, Y2) > 0, and e(y′1, {u2, u3}) > 0. Let z be a neighbor of u4 in Y2. Then Y −y′1−z+w3+w4

is a Y -connector, G[{y′1, w1, u2, u3}] contains a K−
4 , and (u1, w2, z, u4) is a path in G. This

proves (a).

Similarly, assume that w2u2, w2u3, w1u1 ∈ E(G), u4y
′
1 ∈ E(G), and e(Y2, {u2, u3}) > 0.

Let z be a vertex in Y2 adjacent to either u2 or u3. Then Y −y′1−z+w3+w4 is a Y -connector,

G[{{z,w2, u2, u3}] contains a K−
4 , and (u1, w1, y

′
1, u4) is a path in G. �

Case 1.1: e({u2, u3}, {w1, w2}) = 3. To have d3(u2, {w1, w2}) + d3(u3, {w1, w2}) ≥ 9, we

need e({u1, u4}, {w1, w2}) ≥ 3. Thus there is a matching of size 2 between {w1, w2} and

{u1, u4}, so by symmetry, we may assume that w1u1, w2u4 ∈ E(G).

If w1u3, w2u2 ∈ E(G), then by Claim 4, y1, y2, y
′
2 are not neighbors of u2 and u3, we have

a contradiction to d3(u2, S) + d3(u3, S) ≥ 25. So we assume that either w1u3 6∈ E(G) or

w2u2 6∈ E(G) (thus w1u2, w2u3 ∈ E(G)). If u1w2 ∈ E(G) and u4w1 ∈ E(G), then again by

Claim 4, y1, y2, y
′
2 are not neighbors of u2 and u3, we have a contradiction to (12). Thus,

exactly one of w1u3, w2u2 is an edge in G and exactly one of u1w2, u4w1 is an edge in G. So,

we have four possibilities.
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If w2u1, w2u2 ∈ E(G), then by Claim 4 (a), y′1, y2, y
′
2 are not neighbors of u2. So by (12),

e(u3, Y1), e(u3, Y2) ≥ 1. Let u3y2 ∈ E(G). Then Y − y′2 + u3 is a Y -connector, (u1, u2, w2, u4)

is a path in G, and G[w1, w3, w4, y
′
2] contains a K−

4 .

Symmetrically, if w1u3, w1u4 ∈ E(G), then by Claim 4 (b), y1, y2, y
′
2 are not neighbors

of u3. So by (12), e(u2, Y1), e(u2, Y2) ≥ 1, and we may assume that u2y2 ∈ E(G). Then

Y − y′2 + u2 is a Y -connector, (u1, w1, u3, u4) is a path in G, and G[w2, w3, w4, y
′
2] contains a

K−
4 .

If w2u2, w1u4 ∈ E(G), then by Claim 4 (b) for j = 3, y1, y2, y
′
2 are not neighbors of u3.

By Claim 5 (b) for h = 4, either u1y
′
1 6∈ E(G) or e(u2, Y2) = 0. So, by (12), u1y

′
1 6∈ E(G).

Now by Claim 5 (b) for h = 1, either u4y
′
1 6∈ E(G), or e({u2, u3}, Y2) = 0. So, by (12),

u4y
′
1 6∈ E(G) and all other edges in E(S,U) are present. Thus, G[y′1, u2, u3, w1] contains a

K−
4 , {y1, w3, w4, y2} is a Y -connector, and (u1, y

′
2, w2, u4) is a path in G.

The last possibility is that w1u3, w2u1 ∈ E(G). In this case, by Claim 4 (b) for j =

2, y1, y2, y
′
2 are not neighbors of u2. By Claim 5 (a) for h = 1, either e(u4, Y2) = 0 or

e(y′1, {u2, u3}) = 0. Since e(y′1, {u2, u3}) > 0 by (12), we conclude that e(u4, Y2) = 0. Now by

Claim 5 (a) for h = 4, either e(u1, Y2) = 0 or e(y′1, {u2, u3}) = 0. Both cases contradict (12).

Case 1.2: e({u2, u3}, {w1, w2}) = 4. If both, e(u1, {w1, w2}) > 0 and e(u4, {w1, w2}) >

0, then by Claim 4, e({u2, u3}, Y ) ≤ 2. This contradicts (12). So, we may assume that

e(u4, {w1, w2}) = 0. Then under the conditions of Case 1, e(u1, {w1, w2}) > 0.

Case 1.2.1: u1w2 ∈ E(G). By Claim 4, u2y1, u2y2, u2y
′
2 /∈ E(G). By Claim 5, either

e(u4, Y2) = 0 or e(y′1, {u2, u3}) = 0. So, by (12), at most one other edge in E(Y,U) is

missing and this edge must either be u1w2 or be in E(Y, {u1, u4}). If y1u4 ∈ E(G), then

{y′1, w1, u3, y
′
2} is a Y -connector, G[{w2, w3, w4, y2} = K4, and (u1, u2, y1, u4) is a path in G.

Otherwise u1w1 ∈ E(G) and hence {y1, u2, w2, y2} is a Y -connector, G[{y′1, w3, w4, y
′
2}] = K−

4 ,

and (u1, w1, u3, u4) is a path in G.

Case 1.2.2: u1w2 /∈ E(G). Then u1w1 ∈ E(G). By Claim 4, u2y
′
1, u2y2, u2y

′
2 /∈ E(G).

By Claim 5, either u4y
′
1 /∈ E(G) or e(Y2, {u2, u3}) = 0. So, by (12), u4y

′
1 /∈ E(G) and at

most one other edge in E(Y,U) is missing. Moreover, the missing edge, if exists, must be in

E(Y, {u1, u4}). Then u1 has a neighbor, say z, in Y2. Therefore, Y − y′1 − z + w2 + w4 is a

Y -connector, G[{{y′1, w1, w3, u2}] contains a K−
4 , and (u1, z, u3, u4) is a path in G.

Case 2: d3(u2, {w1, w2}) + d3(u3, {w1, w2}) ≤ 8. By (12), d3(u2, Y ) + d3(u3, Y ) ≥ 17. By

symmetry, we may assume that d3(u2, Y ) ≥ 9. Then by Lemma 1, we only need to consider

the 6 configurations in Figure 1 with i = 2.

Note that for each configuration in Figure 1, there exist y ∈ Y1, z ∈ Y2 adjacent to both

u1 and u3. Let y′ ∈ Y1 − y and z′ ∈ Y2 − z. Then in all cases, y′u2, zu4 ∈ E(G).

If w2u2 ∈ E(G), then {y′, u2, w2, z} is a Y -connector, G[{w1, w3, w4, z
′}] contains a K−

4 ,

and (u1, y, u3, u4) is a path in G. Similarly, if w1u2 ∈ E(G), then {y1, w3, w2, z
′} is a Y -

connector, G[{w1, w3, u2, y
′
1}] contains a K−

4 , and (u1, z, u3, u4) is a path in G. So,

(13) w2u2 /∈ E(G) and w1u2 /∈ E(G).
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Note that in all cases except (E), d3(u2, Y ) + d3(u3, Y ) = 17 and in (E), d3(u2, Y ) +

d3(u3, Y ) = 18. So, by (12), d3(u2, {w1, w2}) + d3(u3, {w1, w2}) is at least 7 in Case (E) and

at least 8 otherwise. Thus in the cases other than (E), we do not have other non-edges between

{w1, w2} and {u1, u2, u3, u4}. Therefore, G[{y,w1, w3, w4}] contains a K−
4 , {y′, u2, u3, z

′} is a

Y -connector, and (u1, z, w2, u4) is a path in G. This argument also works for (E) if the miss-

ing edge is incident with w1. If not, then w1 is adjacent to both u1 and u4 and y is adjacent

to at least one of them. Thus, {y′, u2, u3, z
′} is a Y -connector, G[{z,w2, w3, w4}] = K4, and

either (u1, y, w1, u4) or (u1, w1, y, u4) is a path in G. �

Lemma 7. Let F2 be a k-lasso-component of H ′ that consists of a path (u1, . . . , uk) and edges

u1u3 and uk−2uk, where k ≥ 6. Denote T = {u1, u2, u3}. Suppose that T ∩ V (F1) = ∅ and

e(T, {w1, w2}) = 6. If G does not contain an H-approximation slightly better than H ′, then

(a) no vertex in Y − y′1 has a neighbor in {u1, u2};

(b) if u3 has a neighbor in Y2, then y′1 has no neighbor in {u1, u2};

(c) e(Y, T ) ≤ 4.

Proof. Suppose by contradiction that e(Y2, {u1, u2}) > 0. By symmetry, we may assume that

y2u1 ∈ E(G). Define y = y1 if y1w1 ∈ E(G) and let y = y′1 otherwise. Let y′ ∈ Y1 − y.

Then {y2, u1, w1, y} is a Y -connector, G[{y′, w3, w4, y
′
2}] contains a K−

4 , and G[T − u1 + w2]

contains a K3. The proof for y1 in place of y2 is a bit simpler. This proves (a).

Suppose now that e(y′1, {u1, u2}) > 0 and e(u3, Y2) > 0. By symmetry, we may assume that

y′1u1 ∈ E(G) and u3y2 ∈ E(G). Then {y1, w3, w4, y
′
2} is a Y -connector, G[{y′1, w1, u1, u2}]

contains a K−
4 , and G[T − u1 − u2 + w2 + y2] contains a K3. This proves (b), and (c) follows

from (a) and (b). �

Now we return to the remaining cases of D satisfying (11).

If H ′[D] = Ck = (u1, . . . , uk), k ≥ 5, is a component of H ′, then consider
∑

=
∑k

i=1(d3(ui, S)+

d3(ui+1, S)), where indices count modulo k. Then
∑

= 6e(S,D) > 24k, and so there exists

1 ≤ i ≤ k such that d3(ui, S) + d3(ui+1, S) > 24, a contradiction to Lemma 6.

Suppose now that H ′[D] is a Dk-component of H ′ that contains a path (u1, . . . , uk) and

the edges u1u3 and uk−2uk for some k ≥ 6. As in the proof of Lemma 3, let T1 = {u1, u2, u3},

T2 = {uk−2, uk−1, uk}, and let P denote the path (u4, . . . , uk−3). We may assume that D∪Y

cannot be partitioned into a Y -connector and a set W such that G[W ] contains Dk, since

otherwise G contains a subgraph slightly better than H ′. Thus Claim 1 and Claim 2 hold

true.

If k = 6, then by Claim 1, e(Y, Ti) ≤ 8 for i = 1, 2. Hence e({w1, w2},D) > 24− 8− 8 = 8.

By symmetry, we may assume that e(w1, T1) = 3 and e(w4, T2) ≥ 2. Then G[T1 + w1] = K4,

G[T2 ∪ {w2, w3, y2}] contains a D6, and Y1 + w4 + y′2 is a Y -connector.
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If k = 7, then by Lemma 3, e(Y,D) ≤ 18, and so e({w1, w2},D) > 28 − 18 = 10. If

u4w2 ∈ E(G) and w1 has at least two neighbors in Ti for some i = 1, 2, then G[Ti+w1] contains

a K−
4 , G[T3−i ∪ {u4, w2, w3, y2}] contains a D7, and Y1 + w4 + y′2 is a Y -connector. Thus if

u4w2 ∈ E(G), then e(w1,D) ≤ 3 and hence e({w1, w2},D) ≤ 7 + 3 = 10, a contradiction.

A symmetric argument works for w1 in place of w2. So we may assume that u4w1, u4w2 6∈

E(G). Then e(T1 ∪ T2, {w1, w2}) ≥ 11, and so for some i ∈ {1, 2}, e(Ti, {w1, w4}) = 6. By

Lemma 7, e(Ti, Y ) ≤ 4. Then by Claim 1, e(Y,D) ≤ 4 + 8 + 4 = 16, which in turn gives that

e(T1 ∪ T2, {w1, w2}) ≥ 29 − 16 = 13, an impossibility.

If k = 8, then by Lemma 3, e(Y,D) ≤ 21, and so e({w1, w2},D) > 32 − 21 = 11. If

e({w1, w2}, {u4, u5}) = 0, then e(T1∪T2, {w1, w2}) = 12. Hence by Claim 7, e(Y, T1∪T2) ≤ 8,

and so e(Y,D) ≤ 8 + 2|Y | = 16. Thus in this case, e({w1, w2},D) > 32 − 16 = 16, an

impossibility. If w1u4 ∈ E(G) and w2 has at least two neighbors in T1, then G[T1 + w2]

contains a K−
4 , Y − y′1 + w4 is a Y -connector, and G[T2 ∪ {u5, u4, y

′
1, w1, w3}] contains a

D8. Repeating this argument with the switched roles of w1 and w2 and/or of u4 and u5, we

conclude that if e({w1, w2}, {u4, u5}) = j, then e({w1, w2}, T1 ∪ T2) ≤ 12 − 2j, and hence

e({w1, w2},D) ≤ 12 − j < 12, a contradiction.

Let k ≥ 9. As in the proof of Lemma 3, we consider

S′
1 =

3
∑

i=1

d(ui, S) +
5

6
d(u4, S) +

1

2
d(u5, S) +

1

6
d(u6, S),

S′
2 =

1

6
d(uk−6, S) +

1

2
d(uk−5, S) +

5

6
d(uk−4, S) +

k
∑

i=k−3

d(ui, S).

and S′ = S′
1 +

1

6

k−4
∑

i=5

(d3(ui, S) + d3(ui+1, S)) + S′
2

Note that these sums are well defined for k ≥ 9 and that S′ = e(S,D) ≥ 4k+1. By Lemma 6,

d3(ui, S) + d3(ui+1, S) ≤ 24 for 5 ≤ i ≤ k − 4 when k ≥ 9. Thus S′
1 + S′

2 ≥ 37. We may

assume that S′
1 ≥ 18.5. By Claim 2, Y contributes at most 12 to S′

1.

If u4w1 ∈ E(G) and e(w2, T1) ≥ 2, then G[T1 + w2] contains a K−
4 , {y1, w4, y2, y

′
2} is a

Y -connector, and G[D − T1 + {y′1, w1, w3}] contains a Dk. Similar statement holds with the

switched roles of w1 and w2. So, if e({w1, w2}, u4) = j, then e({w1, w2}, T1) ≤ 6 − 2j, and

hence S′
1 ≤ 12 + (6− 2j) + j · 5

6 + 2 · 1
2 + 2 · 1

6 . For j ≥ 1, this expression is less than 18.5, so

j = 0. If e({w1, w2}, T1) ≤ 5, then S′
1 ≤ 12 + 5 + 4

3 < 18.5. Thus, e({w1, w2}, T1) = 6 and by

Lemma 7, e(Y, T1) ≤ 4. Then

S′
1 ≤ 4 + 4

(

5

6
+

1

2
+

1

6

)

+ 6 + 2

(

1

2
+

1

6

)

< 18,

a contradiction.

Thus all cases when H ′[D] is a component of H ′ disjoint from F1 are considered. Now,

suppose that the Y1-block and the Y2-block is the same component H ′[B] of H ′ and D =
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B − Y . By the definition of a gadget and (9), H ′[B] is a double lasso, say (z1, . . . , zk), where

z1 = y1, z2 = y′1, zk−1 = y′2, zk = y2. By (10), since e(S, V (G)−F1) ≥ 4n− 27 = 4(n− 8) + 5

and for every component F2 of H ′ distinct from B, e(S,F2) ≤ 4|F2|, we have e(S,B − Y ) ≥

4(|B|− 4)+5. Since e(S,B −Y ) ≤ |S| |B −Y | = 6|B −Y |, we have k ≥ 7. As in the proof of

the Dirac’s theorem, if for some 3 ≤ i ≤ k − 4, zizk ∈ E(G) and z1zi+1, then G[B] contains

Hamiltonian cycle (z1, z2, . . . , zi, zk, zk−1, . . . , zi+1), a contradiction. Since z1 and z2 (and zk

and zk−1) are equivalent in B, we conclude that e(Y,B −Y ) ≤ 2(1 + (k− 4)). It follows that

e(S,B − Y ) ≤ 2(1 + (k − 4)) + 2(k − 4) = 2 + 4(k − 4), a contradiction.

Finally, suppose that B1 6= B2. By (10), for some j ∈ {1, 2},

(14) e(S,Bj − Yj) ≥ 3 + 4(|Bj | − 2).

Suppose that H ′[Bj ] is a double lasso (z1, . . . , zk), where {z1, z2} = {yj, y
′
j}. Similarly to

the previous paragraph, if for some 3 ≤ i ≤ k − 4 and some z ∈ Y3−j , ziz ∈ E(G)

and z1zi+1, then G[B1 ∪ B2] contains a double lasso that contains B3−j and the path

(z, zi, zi−1, . . . , z1, zi+1, zi+2, . . . , zk). By the symmetry between z2 and z1, we conclude that

e(Y,Bj − Yj) ≤ 2(1 + (k − 2)), a contradiction to (14). This proves the lemma.

9. Proof of Lemma 5

Assume by contradiction that the lemma fails for some choice of Z, T , and D. Everywhere

in this section we use notation T = {u1, u2, u3}. Because of (4), it will be convenient to give

to every edge in E(Z,D) weight 1.5 and to every edge in E(T,D) weight 1. Accordingly,

for every A ⊆ D and B ⊆ T ∪ Z, we define w(A,B) = e(A,T ∩ B) + 1.5e(A,Z ∩ B)

and wG(A,B) = eG(A,T ∩ B) + 1.5eG(A,Z ∩ B). In these terms, (4) can be rewritten as

w(D,T ∪ Z) > 4|D|, or, equivalently,

(15) wG(D,T ∪ Z) < 2|D|.

If D = {x}, then by (4), x has a neighbor zi ∈ Z and a neighbor in T . So, D∪T − z3−i +x

is a Z-attachment.

Suppose that D = {x1, x2}. By (4), w(D,T ∪ Z) ≥ 8.5. If there is a matching of size 2

connecting D with Z (say, with edges z1x1 and z2x2), then some vertex of Z (say, x1) still

has a neighbor in T . In this case, D ∪ T − z2 + x1 is a Z-attachment and G[{x2, z2}] = K2.

Otherwise, at most two edges connect Z with D and hence all edges connecting T with D

are present. Moreover, there is an edge connecting D with Z, say, x1z1. Hence for any c ∈ T ,

D ∪ T − c + x1 is a Z-attachment and G[{x2, c}] = K2.

If H ′[D] = K3, then D has a neighbor in Z and thus G[D ∪ Z] is a Z-attachment.

Let D = {x1, x2, x3, x4} and H ′[D] = K−
4 with edge x2x4 missing. By (4),

(16) w(D,T ∪ Z) ≥ 16.5.

If some x ∈ {x2, x4} has at least two neighbors in T , then some other vertex in D still has

a neighbor in Z, and hence D ∪ Z − x is a Z-attachment. Suppose now that x2 has exactly

one neighbor in T . If x2 also has a neighbor z ∈ Z, and z′ ∈ Z − z, then T + z + x2 is
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a Z-attachment, and to avoid K−
4 in G[D − x2 + z′], z′ has two non-neighbors in D − x2.

In this case, to satisfy (16), x2z
′ ∈ E(G), but then, as above, z has two non-neighbors in

D − x2, a contradiction to (16). So, x2 has no neighbors in Z. But then, by (16), x4 has

a neighbor in T and a neighbor in Z, a contradiction, as above. Thus our assumption is

false and e(T, {x2, x4}) = 0. It follows that at most one other edge between D and T ∪ Z

is missing. In particular, we may assume that z1 is adjacent to all vertices in D and that

z2x3 ∈ E(G). Then Z ∪ T − z1 + x3 is a Z-attachment and G[D − x3 + z1] contains a K−
4 .

Let H ′[D] be a 6-lasso with triangles T1 and T2. If T has a neighbor in Ti and Z has a

neighbor in T3−i, then Z ∪ T3−i is a Z-attachment, a contradiction. So w(D,T ∪ Z) ≤ 18 <

24 = 4|D|, a contradiction to (4).

The remaining three cases, when H ′[D] ∈ {C+
5 ,D9,D7}, need much longer proofs.

Case 1: H ′[D] = C+
5 . Let H ′[D] be a 5-cycle (y1, y2, y3, y4, y5) with chord y2y5. By (4),

(17) w(D,T ∪ Z) ≥ 20.5.

We start from a sequence of short claims. Since we assumed that the lemma fails for Z, T ,

and D, the first statement follows.

(T1) If T ∪D can be partitioned T ∪D = W1 ∪W2 so that G[W1] = K3 and G[W2] ⊇ C+
5 ,

then e(Z,W1) = 0.

(T2) If e(D,T ) ≥ 6, then for some yi, yj ∈ D, G[T + yi + yj] contains C+
5 .

Proof of (T2): Suppose that (T2) fails. Every 5-vertex graph with at least 8 edges contains

C+
5 . So, if e(yi, T ) = 3 for some yi ∈ D, then e(yi−1, T ) = 0, e(yi+1, T ) = 0, and e(yj, T ) ≤ 1

for j = i − 2, i + 2. This yields e(D,T ) ≤ 5, a contradiction. So, e(yi, T ) ≤ 2 for all yi ∈ D.

Then there are two adjacent yi and yj such that e(yi, T ) = 2 and e(yj , T ) ≥ 1. For these i

and j, G[T + yi + yj ] contains C+
5 .

(T3) e(Z,D) ≤ 8 and e(T,D) ≥ 9.

Proof of (T3): By (17), e(D,T ) > 20 − 1.5e(D,Z) ≥ 5.5. So e(T,D) ≥ 6, with equality

only if e(D,Z) = 10. Suppose that e(D,Z) = 10. In this case, for any 3-vertex subset W of

D, G[W ] has an edge, and hence the set Z ∪W is a Z-attachment. Furthermore, by (T2) for

some two vertices yi, yj ∈ D, G[T + yi + yj] contains C+
5 . So, the lemma holds in this case.

Thus, e(D,Z) ≤ 9 and hence e(T,D) ≥ 7.

Suppose e(D,Z) = 9. Then for any i ∈ {1, . . . , 5}, Z ∪ {vi−1, vi, vi+1} is a Z-attachment.

Since e(T,D′) ≥ 7, for some j ∈ {1, . . . , 5}, G[T + yj + jj+1] contains C+
5 . This contradiction

shows that e(Z,D) ≤ 8 and hence e(D,T ) > 20 − 1.5e(D,Z) ≥ 8.

(T4) E(T, {y3, y4}) does not contain a matching of size two. As a result, e(T, {y3, y4}) ≤ 3.

Proof of (T4): Otherwise, T ∪ {y3, y4} contains a C+
5 . By (T1), there is no edge between

Z and the triangle (y1, y2, y5). Then e(Z,D) ≤ 4 and so by (17), e(T,D) ≥ 15. On the

other hand, by (17), 1.5e(Z,D) > 20 − |T ||D| = 5, and hence e(Z,D) ≥ 4. This means

that all edges between Z and {y3, y4} and between T and D are present. So for any u ∈ T ,

G[D − y3 + u] contains a C+
5 and Z ∪ T − u + y3 is a Z-attachment.
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(T5) T ∪ D has no partition into T ′ and D′ such that G[T ′] = K3 and G[D′] ⊃ C+
5 with

|T ∩ T ′| ≤ 1.

Proof of (T5): If there is such a partition T ∪ D = T ′ ∪ D′, then by (T1), e(Z, T ′) = 0. It

follows that e(Z,D) ≤ 6, and so e(T,D) ≥ 12. Since in this case e(T, {y3, y4}) ≥ 3, by (T4),

we may assume that e(y3, T ) = 0. Hence e(T,D − y3) = 12. If e(Z, {y1, y5}) > 0, then for

any u ∈ T , G[T − u + y2 + y3 + y4] contains a C+
5 , and Z + u + y1 + y5 is a Z-attachment,

a contradiction. So e(Z, {y1, y5}) = 0, and hence all edges connecting Z and {y2, y3, y4} are

present. Now Z + y2 + y3 + y4 is a Z-attachment, and G[T + y1 + y5] contains a C+
5 , a

contradiction.

(T6) If e(T, {y1, y2, y5}) ≥ 8, then e(T, {y3, y4}) = 0.

Proof of (T6): Assume by contradiction that e(T, {y1, y2, y5}) ≥ 8 and that u1y4 ∈ E(G).

Since at most one edge in E(T, {y1, y2, y5}) is missing and we can switch the roles of u2 and u3,

we may assume that u3y1, u3y5, u2y2 ∈ E(G). So, if u1y2 ∈ E(G), then G[{u3, y1, y5}] = K3,

and G[{u1, u2, y2, y3, y4}] contains a C+
5 , a contradiction to (T5). Thus u1y2 /∈ E(G) and all

other edges connecting T with {y1, y2, y5} are present. Therefore, if y4uj ∈ E(G) for some

j ∈ {2, 3}, then we switch the roles of u1 and uj and the previous argument works. So,

e(y4, T ) = 1. Furthermore, if y3 has a neighbor ui ∈ T , then we can switch the roles of y3 and

y4 and the roles of y2 and y5: since e(v5, T ) = 3, our argument works. Thus the last possibility

is that E(T, {y3, y4}) = {y4u1}. Then e(T,D) = 9 and so e(Z, T ) ≥ 8. On the other hand,

since G[{y1, u2, u3}] = K3 and G[D−y1 +u1] contains a C+
5 , by (T1), e(y1, Z) = 0. It follows

that e(Z,D − y1) = 8, and hence T + y4 + z1 is a Z-attachment, and G[D − y4 + z2] contains

a C+
5 .

(T7) e(T,D) ≤ 10 and e(Z,D) ≥ 7.

Proof of (T7): By symmetry, assume that e(y4, T ) ≥ e(y3, T ). If e(T,D) ≥ 11, then by

(T4), e(T, {y1, y2, y5}) ≥ 8, and so by (T6), e(T, {y3, y4}) = 0, a contradiction to e(T,D) ≥

11.

(T8) 6 ≤ e(T, {y1, y2, y5}) ≤ 7.

Proof of (T8): By (T3) and (T4), e(T, {y1, y2, y5}) ≥ 6. Suppose that e(T, {y1, y2, y5}) ≥ 8.

Then by (T6), e(T, {y3, y4}) = 0. By (T3), e(T, {y1, y2, y5}) = 9 and e(Z,D) = 8. Since

G[T − u1 + y1] = K3 and G[D − y1 + u1] contains a C+
5 , (T1) implies that e(Z,D − y1) = 8,

and hence Z ∪ {y2, y3, y4} is a Z-attachment, and G[T + y1 + y5] = K5, a contradiction.

(T9) e(T, {y3, y4}) ≤ 2. So e(Z,D) = 8, e(T, {y3, y4}) = 2, and e(T, {y1, y2, y5}) = 7.

Proof of (T9): If e(T, {y3, y4}) ≥ 3, then by (T4), e(T, {y3, y4}) = 3 and exactly one of

y3 and y4 (we may assume y3) is adjacent to all vertices of T . Suppose first that y5 has

no neighbors in T . Then by (T8), e({y1, y2}, T ) = 6 and hence G[T + y1 − u1] = K3 and

G[D − y1 + u1] contains a C+
5 . By (T0), this yields that e(y1, Z) = 0. On the other hand,

since e(T,D) = 9, by (17), we have e(Z,D) ≥ 8, and so e(Z,D − y1) = 8. In this case,

Z ∪ {y5, y3, y4} is a Z-attachment, and G[T + y1 + y2] = K5, a contradiction.
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So by symmetry we may assume that u1y5 ∈ E(G). Then for j = 2, 3, G[{y3, y4, y5 + u1 +

uj}] contains a C+
5 , and hence by (T5), G[{u2, y1, y2}] and G[{u3, y1, y2}] are not triangles.

Thus e(T −u1, {y1, y2}) ≤ 2. So by (T8), e(y5, T ) ≥ 2, and we may assume that u2y5 ∈ E(G).

Repeating the argument with u2 in place of u1, we conclude that e(u1, {y1, y2}) ≤ 1. So, by

(T8), e(y5, T ) = 3. It follows that G[{u1, y1, y2}] = K3 and G[{y3, y4, y5, u2, u3}] contains a

C+
5 , a contradiction to (T5).

We now are ready to finish Case 1. If for some 1 ≤ i ≤ 3, e(ui, {y3, y4}) = 2, then

G[{ui, y3, y4}] = K3 and G[{y1, y2, y5, u3} ∪ (T − ui)] contains a C+
5 , a contradiction to (T5).

Thus by (T9) and (T4), we may assume that y3u1, y3u2 ∈ E(G). If y5u1, y5u2 6∈ E(G), then

by (T9), all other edges connecting T and {y1, y2, y5} are present. Hence G[{u2, u3, y1}] = K3

and G[D−y1+u1] contains a C+
5 . So by (T0), e(y1, Z) = 0 and hence by (T9), e(Z,D−y1) = 8.

It follows that G[Z + y3 + y4 + y5] is a Z-attachment, and G[T + y1 + y2] contains a C+
5 , a

contradiction. Thus assume u1y5 ∈ E(G).

Now G[u1, u2, y3, y4, y5] contains a C+
5 . Then by (T5), G[{u3, y1, y2}] 6= K3, and hence for

some i ∈ {1, 2}, u3yi 6∈ E(G).

Since u3yi 6∈ E(G), by (T9), at most one edge is missing in E(T − u3, {y1, y2, y5}). So,

by the symmetry between u1 and u2, we may assume that u1y1, u1y2, u2y5 ∈ E(G). Then

G[{u1, y1, y2}] = K3 and G[u2, u3, y3, y4, y5] contains a C+
5 , a contradiction to (T5). This

finishes Case 1.

Case 2: H ′[D] = D9. Assume that H ′[D] contains a path (x1, . . . , x9) and edges x1x3

and x7x9. Let T1 = {x1, x2, x3} and T2 = {x7, x8, x9}. By (15),

(18) wG(D,T ∪ Z) < 18.

Claim 6. For i = 1, 2, wG(Ti, Z ∪ T ) ≥ 3.

Proof. Suppose that wG(T1, Z ∪ T ) ≤ 2.5. Then e(Z, T1) ≥ 5 and e(T1, T ) ≥ 7. Thus by

symmetry we may assume that e(z1, T1) = 3 and e(z2, T1) ≥ 2. Let x ∈ {x1, x2} be a neighbor

of z2. Since e(Ti, T ) ≥ 7, x has a neighbor in T . Then T + z2 + x is a Z-attachment, and

G[D − x + z1] contains a D9, a contradiction. �

Claim 7. If e(Z, T1) > 0 (respectively, e(Z, T2) > 0), then e(x4, T ) = 0 (respectively,

e(x6, T ) = 0).

Proof. If e(Z, T1) > 0 and e(x4, T ) > 0, then G[D − T1 + T ] contains a D9 and Z ∪ T1 is a

Z-attachment. �

Assume first that e(Z, T2) = 0, i.e., wG(Z, T2) = 9. Then by (18), wG(Z, T1) < 18− 9 = 9,

i.e., e(Z, T1) > 0. So by Claim 7, e(x4, T ) = 0, and hence by Claim 6,

wG(D,T ∪ Z) − wG(Z, T2) − wG(T1, Z ∪ T ) − wG(x4, T ) < 18 − 9 − 3 − 3 = 3.
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In particular, e(x5, T ) > 0 and e({x4, x5, x6}, Z) ≥ 8. Since at most one edge is missing in

E({x4, x5, x6}, Z), by the symmetry between z1 and z2, we may assume that x5z1, x4z2, x6z2 ∈

E(G). Then G[D−x5 +z2] contains a D9 and T +zj +x2 is a Z-attachment, a contradiction.

So we have e(Z, Ti) > 0 for i = 1, 2. By Claim 7, x4 and x6 have no neighbors in T .

Claim 8. wG(T1 ∪ T2, Z ∪ T ) ≥ 9.

Proof. Suppose that

(19) wG(T1 ∪ T2, Z ∪ T ) < 9.

Assume first that e(Z, T1) ≥ 5. Then for i = 1, 2, there exists j = j(i) ∈ {1, 2} such that

xizj ∈ E(G) and G[T1 − xi + z3−j ] = K3. So for i = 1, 2, if xi has a neighbor in T , then

T +zj +x is a Z-attachment, and G[D−xi +z3−j] contains a D9, a contradiction. Therefore,

e({x1, x2}, T ) = 0. Hence by (19), wG(T2, Z ∪ T ) < 3, a contradiction to Claim 6. So, by the

symmetry between T1 and T2, we conclude that e(Z, Ti) ≤ 4 for i = 1, 2.

Since eG(T1 ∪ T2, Z) ≥ 4, by (19) we have wG(T1 ∪ T2, T ) < 3. Thus by the symmetry

between T1 and T2, we may assume that e(T, T1) ≥ 8. If for some i ∈ {1, 2}, e(xi, Z) > 0,

then we can choose some u ∈ T such that G[T −u+xi] = K3 and G[T1 +u−xi] = K3. In this

case, Z ∪ (T −u)+xi is a Z-attachment, and G[D−xi +u] contains a D9. We conclude that

e(Z, {x1, x2}) = 0 and hence wG(T1, Z) ≥ 6. This together with (19) contradicts Claim 6.

�

Claim 8 implies that

wG({x4, x5, x6}, T ∪ Z) − wG({x4, x6}, T ) < 18 − 9 − 6 = 3.

So e(x5, T ) > 0 and e({x4, x5, x6}, Z) ≥ 5. Thus we may assume that e(z1, {x4, x5, x6}) = 3

and e(z2, {x4, x5, x6}) ≥ 2. By symmetry we may assume that x4z2 ∈ E(G). Then T1+x4+z2

is a Z-attachment, and G[T2 ∪ T ∪ {x5, x6, z1}] contains a D9, a contradiction.

Case 3: H ′[D] = D7. Assume that H ′[D] contains a path (x1, . . . , x7) and edges x1x3

and x5x7. Let T1 = {x1, x2, x3} and T2 = {x5, x6, x7}. By (15),

(20) wG(D,T ∪ Z) < 14.

If e(x4, T ) > 0 and e(Z, T1) > 0, then G[D − T1 + T ] contains a D7 and Z ∪ T1 is a Z-

attachment. So by symmetry, if e(x4, T ) > 0, then e(Z, T1 ∪ T2) = 0, and hence wG(D,T ∪

Z) ≥ 1.5 · 12 = 18, a contradiction to (20). So,

(21) e(x4, T ) = 0.

Claim 9. For i = 1, 2, wG(Ti, T ∪ Z) ≥ 5, and if wG(Ti, T ∪ Z) = 5, then e(Z, Ti) = 4 and

e(T, Ti) = 7.
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Proof. Assume that wG(T1, T ∪Z) ≤ 5. Then e(Z, {x1, x2}) > 0, that is, for some j ∈ {1, 2},

xj has a neighbor in Z. If e(T1, T ) ≥ 8, then since at most one edge in E(T1, T ) is missing,

we may assume that xju1, xju2, x3−ju3, x3u3 ∈ E(G). In this case, G[D − xj + u3] contains

a D7, and Z ∪ T − u3 + xj is a Z-attachment. So, e(T1, T ) ≤ 7, i.e.,

(22) wG(T1, T ) ≥ 2.

Suppose now that e(T1, Z) ≥ 5. Since wG(T1, T ) ≤ 5, for some j ∈ {1, 2}, xj has

a neighbor in T . Since at most one edge is missing in E(T1, Z), we may assume that

xjz1, x3−jz2, x3z2 ∈ E(G). Then G[D − xj + z2] contains a D7, and T + z1 + xj is a Z-

attachment. Thus e(T1, Z) ≤ 4, i.e., wG(T1, Z) ≥ 3. This together with (22) yields the claim.

�

By (20) and (21), wG(T1, T ∪ Z) + wG(T2, T ∪ Z) ≤ 11. So by Claim 9, we may assume

that wG(T1, T ∪Z) = 5, and therefore e(Z, T1) = 4 and e(T, T1) = 7. Also by (20), (21), and

Claim 9,

wG(x4, Z) < 14 − wG(x, T ) − wG(T1 ∪ T2, T ∪ Z) ≤ 14 − 3 − 10 = 1,

which means that x4z1, x4z2 ∈ E(G). Since e(Z, T1) = 4, either z1 or z2 (say z1 by symmetry)

has at least two neighbors in T1. Since e(T, T1) = 7, every vertex in T1 has a neighbor in T .

Then T2 + x4 + z2 is a Z-attachment, and G[T ∪ T1 + z1] contains a D7, a contradiction.
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